Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(16): 7045-7055, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38587903

RESUMO

Despite decades of research and management efforts, eutrophication remains a persistent threat to inland waters. As nutrient pollution intensifies in the coming decades, the implications for aquatic greenhouse gas (GHG) emissions are poorly defined, particularly the responses of individual GHGs: carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The biogeochemical controls of each gas can differ, making it difficult to predict the overall effect of nutrient pollution on the net radiative forcing of aquatic ecosystems. Here, we induced eutrophication of small nitrogen (N)-limited agricultural reservoirs and measured changes in diffusive GHG emissions within a before-after-control-impact (BACI) study design during June to September 2021. Each gas exhibited a unique response to 300% increases in primary production, with a shift from an overall CO2 source to a sink, a modest increase in N2O flux, and, unexpectedly, no significant change in CH4 emissions. The lack of net directional change in CO2-equivalent GHG emissions in fertilized reservoirs during the summer contrasts findings from empirical studies of eutrophic lakes. Our findings illustrate the difficulty in extrapolating among different sized ecosystems and suggest that forecast 2-fold increases in agricultural N fertilization by 2050 may not result in consistently elevated GHG emissions during summer, at least from small reservoirs in continental grassland regions.

2.
Nat Commun ; 15(1): 717, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267478

RESUMO

Inland waters are one of the largest natural sources of methane (CH4), a potent greenhouse gas, but emissions models and estimates were developed for solute-poor ecosystems and may not apply to salt-rich inland waters. Here we combine field surveys and eddy covariance measurements to show that salinity constrains microbial CH4 cycling through complex mechanisms, restricting aquatic emissions from one of the largest global hardwater regions (the Canadian Prairies). Existing models overestimated CH4 emissions from ponds and wetlands by up to several orders of magnitude, with discrepancies linked to salinity. While not significant for rivers and larger lakes, salinity interacted with organic matter availability to shape CH4 patterns in small lentic habitats. We estimate that excluding salinity leads to overestimation of emissions from small Canadian Prairie waterbodies by at least 81% ( ~ 1 Tg yr-1 CO2 equivalent), a quantity comparable to other major national emissions sources. Our findings are consistent with patterns in other hardwater landscapes, likely leading to an overestimation of global lentic CH4 emissions. Widespread salinization of inland waters may impact CH4 cycling and should be considered in future projections of aquatic emissions.

3.
Nat Commun ; 14(1): 1571, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944700

RESUMO

In this Perspective, we put forward an integrative framework to improve estimates of land-atmosphere carbon exchange based on the accumulation of carbon in the landscape as constrained by its lateral export through rivers. The framework uses the watershed as the fundamental spatial unit and integrates all terrestrial and aquatic ecosystems as well as their hydrologic carbon exchanges. Application of the framework should help bridge the existing gap between land and atmosphere-based approaches and offers a platform to increase communication and synergy among the terrestrial, aquatic, and atmospheric research communities that is paramount to advance landscape carbon budget assessments.

4.
Proc Biol Sci ; 289(1979): 20220938, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35855607

RESUMO

Historical and long-term environmental datasets are imperative to understanding how natural systems respond to our changing world. Although immensely valuable, these data are at risk of being lost unless actively curated and archived in data repositories. The practice of data rescue, which we define as identifying, preserving, and sharing valuable data and associated metadata at risk of loss, is an important means of ensuring the long-term viability and accessibility of such datasets. Improvements in policies and best practices around data management will hopefully limit future need for data rescue; these changes, however, do not apply retroactively. While rescuing data is not new, the term lacks formal definition, is often conflated with other terms (i.e. data reuse), and lacks general recommendations. Here, we outline seven key guidelines for effective rescue of historically collected and unmanaged datasets. We discuss prioritization of datasets to rescue, forming effective data rescue teams, preparing the data and associated metadata, and archiving and sharing the rescued materials. In an era of rapid environmental change, the best policy solutions will require evidence from both contemporary and historical sources. It is, therefore, imperative that we identify and preserve valuable, at-risk environmental data before they are lost to science.

5.
Proc Natl Acad Sci U S A ; 116(20): 9814-9819, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036633

RESUMO

Nitrogen pollution and global eutrophication are predicted to increase nitrous oxide (N2O) emissions from freshwater ecosystems. Surface waters within agricultural landscapes experience the full impact of these pressures and can contribute substantially to total landscape N2O emissions. However, N2O measurements to date have focused on flowing waters. Small artificial waterbodies remain greatly understudied in the context of agricultural N2O emissions. This study provides a regional analysis of N2O measurements in small (<0.01 km2) artificial reservoirs, of which an estimated 16 million exist globally. We show that 67% of reservoirs were N2O sinks (-12 to -2 µmol N2O⋅m-2⋅d-1) in Canada's largest agricultural area, despite their highly eutrophic status [99 ± 289 µg⋅L-1 chlorophyll-a (Chl-a)]. Generalized additive models indicated that in situ N2O concentrations were strongly and nonlinearly related to stratification strength and dissolved inorganic nitrogen content, with the lowest N2O levels under conditions of strong water column stability and high algal biomass. Predicted fluxes from previously published models based on lakes, reservoirs, and agricultural waters overestimated measured fluxes on average by 7- to 33-fold, challenging the widely held view that eutrophic N-enriched waters are sources of N2O.


Assuntos
Fazendas , Gases de Efeito Estufa/análise , Ciclo do Nitrogênio , Óxido Nitroso/análise , Lagoas/química , Saskatchewan
6.
PLoS One ; 12(12): e0188652, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29232381

RESUMO

Hardwater lakes are common in human-dominated regions of the world and often experience pollution due to agricultural and urban effluent inputs of inorganic and organic nitrogen (N). Although these lakes are landscape hotspots for CO2 exchange and food web carbon (C) cycling, the effect of N enrichment on hardwater lake food web functioning and C cycling patterns remains unclear. Specifically, it is unknown if different eutrophication scenarios (e.g., modest non point vs. extreme point sources) yield consistent effects on auto- and heterotrophic C cycling, or how biotic responses interact with the inorganic C system to shape responses of air-water CO2 exchange. To address this uncertainty, we induced large metabolic gradients in the plankton community of a hypereutrophic hardwater Canadian prairie lake by adding N as urea (the most widely applied agricultural fertilizer) at loading rates of 0, 1, 3, 8 or 18 mg N L-1 week-1 to 3240-L, in-situ mesocosms. Over three separate 21-day experiments, all treatments of N dramatically increased phytoplankton biomass and gross primary production (GPP) two- to six-fold, but the effects of N on autotrophs plateaued at ~3 mg N L-1. Conversely, heterotrophic metabolism increased linearly with N fertilization over the full treatment range. In nearly all cases, N enhanced net planktonic uptake of dissolved inorganic carbon (DIC), and increased the rate of CO2 influx, while planktonic heterotrophy and CO2 production only occurred in the highest N treatments late in each experiment, and even in these cases, enclosures continued to in-gas CO2. Chemical effects on CO2 through calcite precipitation were also observed, but similarly did not change the direction of net CO2 flux. Taken together, these results demonstrate that atmospheric exchange of CO2 in eutrophic hardwater lakes remains sensitive to increasing N loading and eutrophication, and that even modest levels of N pollution are capable of enhancing autotrophy and CO2 in-gassing in P-rich lake ecosystems.


Assuntos
Dióxido de Carbono/metabolismo , Fixação de Nitrogênio , Plâncton/metabolismo , Biomassa , Monitoramento Ambiental/métodos , Lagos
7.
Nature ; 519(7542): 215-8, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25731167

RESUMO

Boreal lakes are biogeochemical hotspots that alter carbon fluxes by sequestering particulate organic carbon in sediments and by oxidizing terrestrial dissolved organic matter to carbon dioxide (CO2) or methane through microbial processes. At present, such dilute lakes release ∼1.4 petagrams of carbon annually to the atmosphere, and this carbon efflux may increase in the future in response to elevated temperatures and increased hydrological delivery of mineralizable dissolved organic matter to lakes. Much less is known about the potential effects of climate changes on carbon fluxes from carbonate-rich hardwater and saline lakes that account for about 20 per cent of inland water surface area. Here we show that atmospheric warming may reduce CO2 emissions from hardwater lakes. We analyse decadal records of meteorological variability, CO2 fluxes and water chemistry to investigate the processes affecting variations in pH and carbon exchange in hydrologically diverse lakes of central North America. We find that the lakes have shifted progressively from being substantial CO2 sources in the mid-1990s to sequestering CO2 by 2010, with a steady increase in annual mean pH. We attribute the observed changes in pH and CO2 uptake to an atmospheric-warming-induced decline in ice cover in spring that decreases CO2 accumulation under ice, increases spring and summer pH, and enhances the chemical uptake of CO2 in hardwater lakes. Our study suggests that rising temperatures do not invariably increase CO2 emissions from aquatic ecosystems.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Aquecimento Global/estatística & dados numéricos , Temperatura Alta , Lagos/química , Canadá , Sequestro de Carbono , Concentração de Íons de Hidrogênio , Camada de Gelo , Estações do Ano
8.
PLoS One ; 8(1): e53277, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349705

RESUMO

Supply of anthropogenic nitrogen (N) to the biosphere has tripled since 1960; however, little is known of how in situ response to N fertilisation differs among phytoplankton, whether species response varies with the chemical form of N, or how interpretation of N effects is influenced by the method of analysis (microscopy, pigment biomarkers). To address these issues, we conducted two 21-day in situ mesocosm (3140 L) experiments to quantify the species- and genus-specific responses of phytoplankton to fertilisation of P-rich lake waters with ammonium (NH(4)(+)), nitrate (NO(3)(-)), and urea ([NH(2)](2)CO). Phytoplankton abundance was estimated using both microscopic enumeration of cell densities and high performance liquid chromatographic (HPLC) analysis of algal pigments. We found that total algal biomass increased 200% and 350% following fertilisation with NO(3)(-) and chemically-reduced N (NH(4)(+), urea), respectively, although 144 individual taxa exhibited distinctive responses to N, including compound-specific stimulation (Planktothrix agardhii and NH(4)(+)), increased biomass with chemically-reduced N alone (Scenedesmus spp., Coelastrum astroideum) and no response (Aphanizomenon flos-aquae, Ceratium hirundinella). Principle components analyses (PCA) captured 53.2-69.9% of variation in experimental assemblages irrespective of the degree of taxonomic resolution of analysis. PCA of species-level data revealed that congeneric taxa exhibited common responses to fertilisation regimes (e.g., Microcystis aeruginosa, M. flos-aquae, M. botrys), whereas genera within the same division had widely divergent responses to added N (e.g., Anabaena, Planktothrix, Microcystis). Least-squares regression analysis demonstrated that changes in phytoplankton biomass determined by microscopy were correlated significantly (p<0.005) with variations in HPLC-derived concentrations of biomarker pigments (r(2) = 0.13-0.64) from all major algal groups, although HPLC tended to underestimate the relative abundance of cyanobacteria. Together, these findings show that while fertilisation of P-rich lakes with N can increase algal biomass, there is substantial variation in responses of genera and divisions to specific chemical forms of added N.


Assuntos
Nitratos/farmacologia , Fósforo/análise , Fitoplâncton/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Ureia/farmacologia , Água/química , Biomarcadores/metabolismo , Ambiente Controlado , Lagos/química , Luz , Filogenia , Fitoplâncton/classificação , Fitoplâncton/citologia , Pigmentação/efeitos dos fármacos , Especificidade da Espécie , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA